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We study the  number  of  ways  of  writing a  positive  integer n  as  a product
of integer factors greater than one. We survey methods from the literature
for enumerating and also generating lists of such factorizations for a given
number  n.  In  addition,  we  consider  the  same  questions  with  respect  to
factorizations  that  satisfy  constraints,  such  as  having  all  factors  distinct.
We implement  all  these  methods  in Mathematica  and  compare  the  speeds
of various approaches to generating these factorizations in practice.

‡ Introduction
To  study  the  number  of  ways  of  writing  a  positive  integer  n  as  a  product  of
integer  factors  greater  than one,  there  are  two basic  cases  to  consider.  First,  we
can regard rearrangements of factors as different. In the case of n = 12, this gives
the following eight ordered factorizations.

��2, 2, 3�, �2, 3, 2�, �2, 6�, �3, 2, 2�, �3, 4�, �4, 3�, �6, 2�, �12��

Alternatively we can ignore the order of the factors, which then gives the follow-
ing four unordered factorizations. 

��3, 2, 2�, �4, 3�, �6, 2�, �12��

These  two  functions,  which  we  denote  by  HHnL  and  PHnL,  respectively,  can  be
considered  multiplicative  analogs  of  compositions  and  partitions  of  integers.  A
composition is an ordered set of positive integers that sum to n. For example, we
have  eight  compositions  of  n = 4,  namely  {{4},  {3,1},  {1,3},  {2,2},  {2,2,1},  {1,2,1},
{1,1,2},  {1,1,1,1}}.  In  general  the  number  of  compositions  of  n,  CHnL,  is  equal  to
2n-1 . A partition is a set that sums to n  in which order is disregarded.  There are
five partitions of four. To count them we can use the function PartitionsP, and
to list them we can use Partitions from the Combinatorica package.

In[1]:= �� DiscreteMath‘Combinatorica‘

In[2]:= Partitions�4�

Out[2]= ��4�, �3, 1�, �2, 2�, �2, 1, 1�, �1, 1, 1, 1��
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In[3]:= PartitionsP�Range�10��

Out[3]= �1, 2, 3, 5, 7, 11, 15, 22, 30, 42�

In  fact  the  number  of  compositions  and  partitions  arise  as  special  cases  of  our
factorization  functions,  in  the  sense  that  if  p  is  a  prime  number,  then
H  Hpr L = CHrL = 2r-1  and  P Hpr L = PartitionsP@rD.  For  general  numbers  n  with
prime factorizations  n = p1

r1 p2
r2  … pk

rk ,  the enumeration of HHnL and PHnL is more
complicated, as we shall discuss later.

We  will  also  discuss  factorizations  into  distinct  parts.  In  the  ordered  case,
Hd H12L = 5 since we have the factorizations  {{2,6},  {3,4},  {4,3},  {6,2},  {12}}. In the
unordered case, Pd H12L = 3 since there are three cases, {{4,3}, {6,2}, {12}}. If p is a
prime  number,  then  as  special  cases  we  have  Hd Hpr L = Cd H rL  and
P Hpr L = PartitionsQ@rD,  where  Cd  HrL  denotes  the number  of  compositions  of r
into distinct parts (see Richmond and Knopfmacher [1]), and PartitionsQ is the
Mathematica function for counting partitions into distinct parts.

In[4]:= PartitionsQ�Range�10��

Out[4]= �1, 1, 2, 2, 3, 4, 5, 6, 8, 10�

The  enumeration  and  generation  of  integer  partitions  and  compositions  are
problems discussed in standard books on combinatorics.  A definitive reference is
Andrews  [2].  However,  the  corresponding  problems  for  ordered  and  unordered
factorizations have not until now received a comprehensive treatment.

‡ Ordered Factorizations
For  historical  reasons,  we  will  discuss  formulas  to  enumerate  factorizations
before  we  discuss  methods  to  generate  the  corresponding  factorizations.  In
addition, some of the recursive methods to generate factorizations are extensions
of the corresponding recursions to enumerate factorizations.

· Recursions for Enumerating Ordered Factorizations
We begin with two recurrence formulas  given by Hille  [3]. The first element  of
an ordered factorization  of n > 1 can be any  number  d  such that  d  divides n.  By
appending to d  all possible ordered factorizations of n ê d, we obtain the recursion
HH1L = 1; H  HnL = ⁄d»n HHdL for n ¥ 2. We implement this as follows.

In[5]:= H1�1� :� 1;
H1�n_� :� H1�n� � Total�H1 �� Drop�Divisors�n�, �1��

In[7]:= Table�H1�n�, �n, 1, 12��

Out[7]= �1, 1, 1, 2, 1, 3, 1, 4, 2, 3, 1, 8�
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Using the Möbius inversion formula, Hille also derived a second recursion, 

H  HnL = 2 

i

k
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where n = p1
r1 p1

r1  p2
r2  … pk

rk , which holds for n ¥ 2.

This finds the list of distinct prime factors of n.

In[8]:= PrimeFactorList�n_� :� First �� FactorInteger�n�

This recursion requires the initial value 1ÅÅÅÅÅ2 .

In[9]:= H2�1� � 1�2;

The recursion can be rendered elegantly as a oneliner.

In[10]:= H2�n_� :� H2�n� � �2 Total���1�^�Length�#�� H2�n� Times �� #� & ��
Rest�Subsets�PrimeFactorList�n����

In[11]:= Table�H2�n�, �n, 2, 12��
Out[11]= �1, 1, 2, 1, 3, 1, 4, 2, 3, 1, 8�

· MacMahon’s Formula for H
MacMahon [4] derived an explicit formula for the value of HHnL as a double sum
over a product. Given n = p1

r1 p1
r1  p2

r2  … pk
rk , 

H  HnL = „
j=1
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where q = ⁄i=1
k ri , is the sum of the prime exponents of n. We program this by

In[12]:= H3�n_� :�

�
j�1

Total�##�

�
i�0

j

��1�i  Binomial�j, i� Apply�Times,

Binomial�# � j � i � 1, #� & �� #� &�Last �� FactorInteger�n��
In[13]:= H3�2^5 3^4 5� �� Timing

Out[13]= �0. Second, 102576�

· A Recursion for Factorizations with Distinct Parts
Warlimont  [5]  derived  a  Dirichlet  series  generating  function  for  the  function
Hd  Hk, nL, which denotes the number of ordered factorizations of n into k distinct
parts.  Although  Warlimont  was  only  interested  in  this  for  asymptotic  purposes,
his generating function can be used to derive the following recurrence:

Hd Hk + 1, nL = k ! „
j=0

k H-1L j

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHk - 1 - jL!
 ‚Hd Jk - j,

n
ÅÅÅÅÅÅ
d
N,
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where  the  inside  sum  is  taken  over  all  d  such  that  d » n  and  for  d ¥ 2,  d  is  a
H j + 1L-st power.

There  does  not  seem  to  be  a  simple  combinatorial  interpretation  for  this  for-
mula. We implement this starting with the appropriate boundary conditions.

In[14]:= Hd�1, n_� :� 1;
Hd�k_, 1� :� 0;
Hd�0, n_� :� 0

In[17]:= Hd�0, 1� :� 1;
Hd�1, 1� :� 0;

When n is a prime number we have the following.

In[19]:= Hd�k_, n_?PrimeQ� :� KroneckerDelta�k, 1�

Also observe that the number of parts k must satisfy 2k § n.

In[20]:= Hd�k_, n_ �; 2k � n� :� 0

Now we implement the general formula.

In[21]:= Hd�k_, n_� :�

Hd�k, n� � �k � 1�� �
j�0

k�1

	��1�j 
 �k � 1 � j�� Total�Hd�k � 1 � j, n�#� & ��

Select�Rest�Divisors�n��, IntegerQ�#1��j�1� � &���
In[22]:= Hd�#, 24� & �� Range�0, 4�

Out[22]= �0, 1, 6, 6, 0�

We  verify  these  counts  by  using  the  function  DistinctOrderedFactorizaÖ
tions, which is defined in the next subsection.

In[23]:= DistinctOrderedFactorizations�24�

Out[23]= ��2, 3, 4�, �2, 4, 3�, �2, 12�, �3, 2, 4�, �3, 4, 2�, �3, 8�,
�4, 2, 3�, �4, 3, 2�, �4, 6�, �6, 4�, �8, 3�, �12, 2�, �24��

To  obtain  the  total  number  of  distinct  ordered  factorizations,  we  must  sum
Hd @k, nD over all permissible values of the number of parts k.

In[24]:= Hd�n_� :� Total�Hd�#, n� & �� Range�Floor�Log�2, n����

In[25]:= Hd�36�

Out[25]= 13

In practice this recursion is slow. A faster counting method is discussed in a later
section.

· Generating Ordered Factorizations
The first recursion for HHnL suggests a natural recursive approach to generate all
the ordered factorizations of n.
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We  append  to  the  first  factor  d  in  a  factorization  of  n > 1,  all  possible  ordered
factorizations of nÅÅÅÅÅd , where d can be any divisor of n.

In[26]:= OrderedFactorizations�1� � ����;

In[27]:= OrderedFactorizations�n_?PrimeQ� :� ��n��

In[28]:= OrderedFactorizations�n_� :�
OrderedFactorizations�n� � Flatten�Function�d, Prepend�#, d� & ��

OrderedFactorizations�n�d�� �� Rest�Divisors�n��, 1�
In[29]:= OrderedFactorizations�24�

Out[29]= ��2, 2, 2, 3�, �2, 2, 3, 2�, �2, 2, 6�, �2, 3, 2, 2�, �2, 3, 4�, �2, 4, 3�,
�2, 6, 2�, �2, 12�, �3, 2, 2, 2�, �3, 2, 4�, �3, 4, 2�, �3, 8�,
�4, 2, 3�, �4, 3, 2�, �4, 6�, �6, 2, 2�, �6, 4�, �8, 3�, �12, 2�, �24��

One way to list all the ordered factorizations with distinct parts is to simply select
these from the list of all ordered factorizations.

In[30]:= DistinctOrderedFactorizations�n_� :�
Select�OrderedFactorizations�n�, Unequal �� # &D

In[31]:= DistinctOrderedFactorizations�24�

Out[31]= ��2, 3, 4�, �2, 4, 3�, �2, 12�, �3, 2, 4�, �3, 4, 2�, �3, 8�,
�4, 2, 3�, �4, 3, 2�, �4, 6�, �6, 4�, �8, 3�, �12, 2�, �24��

However,  there  are  faster  methods  for  doing  this,  which  we  discuss  in  a  later
section.

‡ Unordered Factorizations
There do  not appear  to be  any  explicit  formulas  for  PHnL  in  the literature.  Also,
the  recurrence  relations  that  are  known  tend  to  lack  simple  combinatorial
interpretations.

· A Product Recursion
Harris  and  Subbarao  [6]  give  the  following  product  recursion  for  PHnL.  For  any
positive  integer  a,  let  di = a1êi  if  a  is  an  ith  power  and  di = 1  otherwise.  Let
d
êê

= ¤i=1
¶ di .  This  gives  ¤d »n d

êê pHnêdL
= n pHnL .  To make  use of  this,  we take  logs  of

the recurrence. First, we define the d
êê

 values in terms of a given positive integer a.
One approach is to use Product.

In[32]:= d1�����a_� :� �
i�1

Ceiling�Log�2,a��
If�IntegerQ�c � a1�i�, c, 1�

Alternatively, here is a more elegant construction.

In[33]:= d2
�����a_� :� Apply�Times , Select�a1�Range�Ceiling�Log�2,a���, IntegerQ��

Then we can define P2.
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In[34]:= P2�1� � 1;

In[35]:= P2�n_� :� P2�n� � Round
1� �Log�n��
Simplify
Total
 Log
d2�����#�� P2�n� #� & �� Rest�Divisors�n�����

The use  of  Simplify  in  P2  is  not required,  but  speeds  up the  overall  computa-
tion. Round  produces  the correct  integer  value for P2  much faster  than by using
additional simplification methods to remove the logarithms.

In[36]:= P2�33  23� �� Timing

Out[36]= �0.078 Second, 31�

· A Recursion for Unordered Factorizations with Largest Part m
Let gHm, nL denote the number of unordered factorizations of n with largest part
at most m. Hughes and Shallit [7] gave the recursion

g Hm, nL = ‚
d »n
d§m

g Jd,
n
ÅÅÅÅÅÅ
d
N.

This  particular  recursion  is  easy  to  explain:  Let  n = a1  a2  … an  be  an unordered
factorization of n with parts at most m and parts arranged in decreasing order, so
that  the  largest  part  is  a1 .  The  number  of  ways  to  choose  a2 , … , ak  is  then
gHa1 , n ê a1 L.  For  a1  we can choose any  divisor  d  of n  such that  d § m.  Summing
over all such d gives the result. We implement this as follows.

In[37]:= g�m_, 1� :� 1;
g�1, n_� :� 0;
g�1, 1� � 1;
g�m_, n_� :�
g�m, n� � Total�g�#, n� #� & �� Select�Divisors�n�, # 	 m &��

All unordered factorizations are counted by gHn, nL.
In[41]:= P1�n_� :� g�n, n�
In[42]:= P1 �� Range�12�

Out[42]= �1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4�

This gives a much faster recursion than P2.

In[43]:= P1�36  24� �� Timing

Out[43]= �0.016 Second, 323�

In[44]:= P2�36  24� �� Timing

Out[44]= �0.422 Second, 323�

Canfield, Erdös, and Pomerance [8] remarked in their paper that it is not particu-
larly easy to compute PHnL. They mention that even showing PH1800L = 137 takes
some  work.  Their  approach  was  based  on  a  tree  traversal  algorithm.  With  our
recursion this computation presents no problem.

In[45]:= P1�1800� �� Timing

Out[45]= �0.015 Second, 137�
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· Generating Unordered Factorizations
One inefficient approach is simply to sort the larger list of ordered factorizations
and remove duplicates.  However, a better  approach is to use the Hughes–Shallit
idea  to  recursively  build  up  a  list  of  ordered  factorizations  with  largest  part  at
most m.

In[46]:= UnorderedFactorizations�m_, 1� � ����;
UnorderedFactorizations�1, n_� � ����;

In[48]:= UnorderedFactorizations�m_, n_ �; PrimeQ�n�� :� If�m � n, ��, ��n���

In[49]:= UnorderedFactorizations�m_, n_� :�
UnorderedFactorizations�m, n� � Flatten�

Function�d, Prepend�#, d� & �� UnorderedFactorizations�d, n�d�� ��
Rest�Select�Divisors�n�, # 	 m &��, 1�

In[50]:= UnorderedFactorizations�n_� :� UnorderedFactorizations�n, n�

Now we test this out.

In[51]:= UnorderedFactorizations�24�

Out[51]= ��3, 2, 2, 2�, �4, 3, 2�, �6, 2, 2�, �6, 4�, �8, 3�, �12, 2�, �24��

In[52]:= Length�UnorderedFactorizations�34  24�� 
 P1�34  24�

Out[52]= True

·  Unordered Factorizations with Distinct Parts
A  modification  of  Hughes–Shallit  reasoning  gives  a  recursion  for  unordered
factorizations  with distinct  parts and largest  part at  most  m.  We merely observe
that the part added to d should have largest part less than or equal to d - 1: 

gdHm, nL = ‚
d »n
d§m

gdJd - 1,
n
ÅÅÅÅÅÅ
d
N.

We program this with necessary boundary conditions to start the recursion.

In[53]:= gd�m_, 1� :� 1;
gd�1, n_� :� 0;
gd�1, 1� � 1;
gd�0, n_� :� 0;
gd�m_, n_� :�
gd�m, n� � Total�gd�# � 1, n�#� & �� Select�Divisors�n�, # 	 m &��

In[58]:= Pd�n_� :� gd�n, n�

Here is an example.

In[59]:= Pd�34  22  5 7� �� Timing

Out[59]= �0.016 Second, 253�
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Generating Unordered Factorizations with Distinct Parts
Again  we  can  simply  select  the  permissible  factorizations  from  the  larger  list  of
all  unordered  factorizations,  but  a  better  approach  is  to  recursively  generate
them using the idea for the recursion for gdHm, nL.

In[60]:= DistinctUnorderedFactorizations�m_, 1� � ����;
DistinctUnorderedFactorizations�1, n_� � ��;
DistinctUnorderedFactorizations�0, n_� � ��;

In[63]:= DistinctUnorderedFactorizations�m_, n_ �; PrimeQ�n�� :�
If�m � n, ��, ��n���

In[64]:= DistinctUnorderedFactorizations�m_, n_� :�
DistinctUnorderedFactorizations�m, n� � Flatten�Function�d,

Prepend�#, d� & �� DistinctUnorderedFactorizations�d � 1, n� d�� ��
Rest�Select�Divisors�n�, # 	 m &��, 1�

In[65]:= DistinctUnorderedFactorizations�n_� :�
DistinctUnorderedFactorizations�n, n�

Here are the distinct unordered factorizations of 24.

In[66]:= DistinctUnorderedFactorizations�24�

Out[66]= ��4, 3, 2�, �6, 4�, �8, 3�, �12, 2�, �24��

Here are the nondistinct factorizations.

In[67]:= Complement�UnorderedFactorizations�24�, %�

Out[67]= ��6, 2, 2�, �3, 2, 2, 2��

We check that we are generating the right number of cases.

In[68]:= Pd�34  24� 
 Length�DistinctUnorderedFactorizations�34  24��
Out[68]= True

· Faster Generation of Ordered Factorization Lists
The  lists  of  unordered  factorizations  constructed  earlier  lead  to  a  much  faster
way  of  generating  the  corresponding  lists  of  ordered  factorizations.  We  merely
observe  that  all  ordered  cases  arise  as  permutations  of  unordered  cases.  This
gives  a  different  ordering  of  the  factorizations  to  the  earlier  method.  However,
the lists are easily checked to be the same.

In[69]:= OrderedFactorizations2�n_� :�
Flatten�Permutations �� UnorderedFactorizations�n�, 1�

In[70]:= OrderedFactorizations2�24�

Out[70]= ��3, 2, 2, 2�, �2, 3, 2, 2�, �2, 2, 3, 2�,
�2, 2, 2, 3�, �4, 3, 2�, �4, 2, 3�, �3, 4, 2�, �3, 2, 4�,
�2, 4, 3�, �2, 3, 4�, �6, 2, 2�, �2, 6, 2�, �2, 2, 6�,
�6, 4�, �4, 6�, �8, 3�, �3, 8�, �12, 2�, �2, 12�, �24��
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In[71]:= Sort�%� 
 Sort�OrderedFactorizations�24��

Out[71]= True

The new approach gives a faster method for generating the factorizations list. 

In[72]:= Length�OrderedFactorizations2�30^3�� �� Timing

Out[72]= �0.078 Second, 64324�

In[73]:= Length�OrderedFactorizations�30^3�� �� Timing

Out[73]= �0.172 Second, 64324�

Factorizations with Distinct Parts
Again  all  ordered  cases  arise  as  permutations  of  unordered  distinct  cases.  This
also leads to a large speedup in computation time.

In[74]:= DistinctOrderedFactorizationsNew�n_� :�
Flatten�Permutations �� DistinctUnorderedFactorizations�n�, 1�

In[75]:= Sort�DistinctOrderedFactorizationsNew�60�� ��
Sort�DistinctOrderedFactorizations�60��

Out[75]= True

· Faster Count for Ordered Factorizations with Distinct Parts
Let Pd Hk, nL  denote the number  of unordered factorizations  into k  distinct  parts.
We observe that Hd  HnL = ⁄k  k! Pd Hk, nL.  We do not have a formula for Pd Hk, nL,
but we can compute its values by sorting the lists of distinct unordered factoriza-
tions according to length. Although we generate (generally short) lists of factoriza-
tions as  part  of the counting  process,  this  turns out  to be  the fastest  method we
have found to compute the usually large values of Hd . 

First,  we  sort  our  lists  of  factorizations  according  to  length.  For  example,  here
n = 36.

In[76]:= lis �
Sort�DistinctUnorderedFactorizations�36�, Length�#1� � Length�#2� &�

Out[76]= ��36�, �18, 2�, �12, 3�, �9, 4�, �6, 3, 2��

Then, we split up the different classes with respect to length, count how many of
length k occur, multiply by k !, and sum.

In[77]:= Split�lis, Length�#1� �� Length�#2� &�

Out[77]= ���36��, ��18, 2�, �12, 3�, �9, 4��, ��6, 3, 2���

In[78]:= a � Length �� %;
Plus �� �a Range�Length�a����

Out[79]= 13

This  agrees  with  our  previous  computation.  We  put  this  method  together  as  a
oneliner.
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In[80]:= H
`
d�n_� :� Plus �� �# Range�Length�#���� &�
Length �� Split�Sort�DistinctUnorderedFactorizations�n�,

Length�#1� � Length�#2� &�, Length�#1� �� Length�#2� &��

In[81]:= H
`
d�30^3� �� Timing

Out[81]= �0.047 Second, 11655�

In general, H
`

d  seems to provide a considerable speedup over Hd .

In[82]:= Hd�30^3� �� Timing

Out[82]= �4.375 Second, 11655�

‡ Highly Factorable Numbers
Now  that  we  have  implemented  various  methods  to  count  ordered  and  unor-
dered  factorizations,  we  will  put  them  to  use  to  produce  lists  of  numbers  that
have a greater number of factorizations than any smaller positive integer.

We say that  a natural number n  is highly factorable with respect to the function
f ,  if  f HmL < f HnL  for  all  m,  1 § m < n.  In  [8],  Canfield,  Erdös,  and  Pomerance
computed  a  list  of  highly  factorable  numbers  with  respect  to  the  function  P.
Since the functions P  and H  depend on the prime exponents but not the primes
themselves,  it  is  clear  that  a  highly  factorable  number  must  be  of  the  form
n = p1

r1 p2
r2  ∫ pk

rk  with  r1 ¥ r2 ¥ ∫ rk ¥ 1  and  where  pi  denotes  the  ith  prime
number. We use Partitions to generate a list of acceptable exponents and then
define a  function ExponentsToNumber  to  produce a  natural  number  n  using the
exponents from the partition and the corresponding first few primes.

In[83]:= ExponentsToNumber�exponentList_� :� Times ���
�Prime�Range�#�� & �� �Length �� exponentList�^exponentList�

In[84]:= Partitions�4�

Out[84]= ��4�, �3, 1�, �2, 2�, �2, 1, 1�, �1, 1, 1, 1��

In[85]:= ExponentsToNumber�%�

Out[85]= �16, 24, 36, 60, 210�

To  produce  all  numbers  of  this  form  less  than  a  given  value  bound,  we  must
consider  all  partitions  of  numbers  1  to  Log[2,bound],  as  the  smallest  number
arising from a partition of n is 2n .

In[86]:= lst�bound_� :� Flatten�Table�Partitions�k�, �k, Log�2, bound���, 1�;

For example, let us find all the highly factorable numbers less than 1000.

In[87]:= a � Sort�ExponentsToNumber�lst�1000���;

Now eliminate  numbers  greater  than bound in our  list, compute the value of the
P  function  for  each  number  in  the  list,  and  eliminate  the  values  that  are  not
highly factorable using a replacement rule.
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In[88]:= b � Select�a, # � 1000 &�;

In[89]:= valsP � �#, P1�#�� & �� b;

In[90]:= LargePlist � valsP ��.
�x___, �y1_, y2_�, �z1_, z2_�, w___� � �x, �y1, y2�, w� �; y2 � z2;

Now we use GridBox to display our table of highly factorable P numbers.

In[91]:= StyleBox�FormBox�GridBox�Prepend�LargePlist, �"n", "P�n�"��,
GridFrame 
 3, ColumnLines 
 1, RowLines 
 �2, 1�, ColumnSpacings 

0.5, ColumnAlignments 
 "."�, "TraditionalForm"�,

Background 
 GrayLevel�0.85�, FontSize 
 8� �� DisplayForm

Out[91]//DisplayForm=

n PHnL
2 1

4 2

8 3

12 4

16 5

24 7

36 9

48 12

72 16

96 19

120 21

144 29

192 30

216 31

240 38

288 47

360 52

432 57

480 64

576 77

720 98

960 105

Replacing P1 by H3 leads to the following list of highly factorable numbers with
respect to H .

In[92]:= Off�General::spell1�

82 Arnold Knopfmacher and Michael Mays

The Mathematica  Journal 10:1 © 2006 Wolfram  Media, Inc.



In[93]:= LargeHlist � �#, H3�#�� & �� b ��.
�x___, �y1_, y2_�, �z1_, z2_�, w___� � �x, �y1, y2�, w� �; y2 � z2;

StyleBox�FormBox�GridBox�Prepend�LargeHlist, �"n", "H�n�"��,
GridFrame 
 3, ColumnLines 
 1, RowLines 
 �2, 1�, ColumnSpacings 

0.5, ColumnAlignments 
 "."�, "TraditionalForm"�,

Background 
 GrayLevel�0.85�, FontSize 
 8� �� DisplayForm

Out[94]//DisplayForm=

n HHnL
2 1

4 2

6 3

8 4

12 8

24 20

36 26

48 48

72 76

96 112

120 132

144 208

192 256

240 368

288 544

360 604

432 768

480 976

576 1376

720 1888

864 2208

960 2496

Erdös,  Canfield,  and  Pomerance  were  able  to  compute  a  table  of  all  highly
factorable  numbers  less  than  109  with  respect  to  P  in  their  paper  [8].  The
approach just  used gives  a much faster  method to find the 118 highly  factorable
numbers  less  than  109  with  respect  to  P,  as  well  as  the  124  highly  factorable
numbers less than 109  with respect to H .

· Numbers Highly Factorable with Respect to Both P and H
There  appear  to  be  many  numbers  common  to  both  of  the  displayed  lists.  To
find these common numbers, join the two lists and extract the first elements (the
common values  of n).  Find the pairs  by using Split.  Then  extract  the common
numbers as the first element of the sublists of length 2.

In[95]:= commonPositions � First �� �Join�LargePlist, LargeHlist� �� Sort�

Out[95]= �2, 2, 4, 4, 6, 8, 8, 12, 12, 16, 24, 24, 36, 36, 48, 48, 72, 72,
96, 96, 120, 120, 144, 144, 192, 192, 216, 240, 240, 288, 288,
360, 360, 432, 432, 480, 480, 576, 576, 720, 720, 864, 960, 960�
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In[96]:= First �� Select�Split�commonPositions, #1 �� #2 &�, Length�#� 
 2 &�

Out[96]= �2, 4, 8, 12, 24, 36, 48, 72, 96, 120,
144, 192, 240, 288, 360, 432, 480, 576, 720, 960�

So  up  to  1000,  most  highly  factorable  numbers  appear  in  both  lists.  However,
common  numbers  seem  to  become less  frequent  as  we increase  our  bound.  For
example,  we find that  there are  55 common highly factorable  numbers  less than
109 , the largest of these being 43545600.

‡ Factorizations with Relatively Prime Parts
In this final section we investigate an interesting class of restricted factorizations,
namely the class of factorizations in which the factors must be relatively prime to
each  other.  Clearly  this  is  a  stronger  restriction  than  requiring  distinct  factors.
The asymptotic growth of such factorizations has been studied by Warlimont [5].
We  note  that  in  the  special  case  of  squarefree  integers,  all  factorizations  are
necessarily relatively  prime and distinct.  Thus,  for squarefree integers  the values
of  the  three  functions  that  count  unrestricted  or  distinct  or  relatively  prime
factorizations, all coincide for the ordered and unordered cases respectively.

We will  discuss and compare several different  approaches to generate  the corre-
sponding lists of factorizations. 

· Ordered Factorizations with Relatively Prime Parts
In the ordered case, factorizations  of n = p1

r1 p2
r2  … pk

rk  into relatively prime parts
have a natural  correspondence to ordered partitions of a set with the k  elements
p1

r1 , p2
r2 , … , pk

rk . The exponential generating function for the number of ordered
set partitions is 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2-Ex . (These and further results on set partitions that follow can
be found  in Wilf’s  book  [9].)  From this  exponential  generating  function we can
easily compute the first few values.

In[97]:= CoefficientList�Series�
1

��������������
2 � Ex

, �x, 0, 10��, x� Range�0, 10��

Out[97]= �1, 1, 3, 13, 75, 541, 4683, 47293, 545835, 7087261, 102247563�

Here is  another  expression  for  the  number  of  ordered  set partitions  (sometimes
called ordered Bell numbers) due to Carlitz [10].

In[98]:= OrderedBell�0� :� 1;

In[99]:= OrderedBell�r_� :� �
k�0

r

�
j�0

k

��1�k�j  Binomial�k, j� jr

In[100]:= Table�OrderedBell�r�, �r, 0, 10��

Out[100]= �1, 1, 3, 13, 75, 541, 4683, 47293, 545835, 7087261, 102247563�

In addition there is also this pretty expression as an infinite sum.
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In[101]:= OrderedBell2�n_� :�
1
����
2

 �
m�0

�

mn  2�m

Using  either  of  these  it  is  easy  to  count  the number  of  ordered relatively  prime
factorizations.

In[102]:= Hr�n_� :� OrderedBell�Length�FactorInteger�n���

In[103]:= Hr�304�
Out[103]= 13

· Unordered Factorizations with Relatively Prime Parts
In  the  unordered  case,  factorizations  of  n = p1

r1 p2
r2  … pk

rk  into  relatively  prime
parts now have a natural correspondence to unordered partitions of a set with the
k elements p1

r1 , p2
r2 , … , pk

rk . The exponential generating function for the number
of  ordered  set  partitions  is  EEx -1 .  We  use  this  to  easily  compute  the  first  few
values.

In[104]:= CoefficientList�Series�EEx �1 , �x, 0, 10��, x� Range�0, 10��

Out[104]= �1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975�

Again  there  is  a  pretty  expression  for  the  number  of  partitions  of  a  set  (or  Bell
numbers)  as  an  infinite  sum.  Now  it  is  easy  to  count  the  number  of  unordered
relatively prime factorizations.

In[105]:= Off�General::spell�

In[106]:= Bell�n_� :�
1
����
E

 �
m�0

�

mn �m�

In[107]:= Pr�n_� :� Bell�Length�FactorInteger�n���

In[108]:= Pr�304�
Out[108]= 5

· Generating Lists of Relatively Prime Factorizations
There are several different approaches that can be used to find the desired lists.

Unordered Relatively Prime Factorizations by Selection
To generate  a  list  of  relatively prime  factorizations,  we need only search among
the  distinct  unordered  factorizations  and  pick  out  those  with  relatively  prime
parts.

Method 1. By Factorization
Our first approach to selecting the relatively prime cases is to factor the numbers
in  each  distinct  unordered  factorization,  and  after  flattening  and  sorting,  see  if
this matches the factorization of n.
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In[109]:= Sort�Flatten�FactorInteger��15, 4��, 1�� �� FactorInteger�60�

Out[109]= True

In[110]:= Sort�Flatten�FactorInteger��6, 10��, 1�� �� FactorInteger�60�

Out[110]= False

This shows that 815, 4< is  admissible  as a relatively prime factorization of 60 but
86, 10< is not. We illustrate the method in the case n = 60.

In[111]:= DistinctUnorderedFactorizations�60�

Out[111]= ��5, 4, 3�, �6, 5, 2�, �10, 3, 2�,
�10, 6�, �12, 5�, �15, 4�, �20, 3�, �30, 2�, �60��

In[112]:= a � Flatten�#, 1� & �� FactorInteger �� %;

We determine the positions of the cases with admissible factorizations.  Then we
read off these factorizations from the list.

In[113]:= Position�Sort �� a, FactorInteger�60��

Out[113]= ��1�, �5�, �6�, �7�, �9��

In[114]:= DistinctUnorderedFactorizations�60���Flatten�%���

Out[114]= ��5, 4, 3�, �12, 5�, �15, 4�, �20, 3�, �60��

We put this together into one function.

In[115]:= UnorderedRelativelyPrime1�n_� :� DistinctUnorderedFactorizations�
n���Flatten�Position�Sort �� �Flatten�#, 1� & �� �FactorInteger ��

DistinctUnorderedFactorizations�n���, FactorInteger�n�����
In[116]:= UnorderedRelativelyPrime1�240�

Out[116]= ��16, 5, 3�, �16, 15�, �48, 5�, �80, 3�, �240��

Method 2. By Greatest Common Divisors
A  second  approach  is  to  check  that  the  factors  are  relatively  prime  directly,  by
finding the greatest common divisors of every pair of factors. However, Bressoud
and  Wagon  [11]  give  a  much  more  efficient  way  to  test  a  long  list  for  relative
primality of all pairs.

In[117]:= RelativelyPrimeList�lst_� :� LCM �� lst �� Times �� lst

We rewrite our function accordingly.

In[118]:= UnorderedRelativelyPrime2�n_� :� DistinctUnorderedFactorizations�
n���Flatten�Position�RelativelyPrimeList��

DistinctUnorderedFactorizations�n�, True����
In[119]:= Length�UnorderedRelativelyPrime2�240 49 11 13�� �� Timing

Out[119]= �0.438 Second, 203�

In[120]:= Length�UnorderedRelativelyPrime1�240 49 11 13�� �� Timing

Out[120]= �0.219 Second, 203�
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Method 3: By Generating Set Partitions
The  idea  here  is  to  generate  the  partitions  of  a  set  with  k  elements  and  then
replace  these  elements  with  the  appropriate  prime  powers  to  obtain  a  list  of
relatively  prime  factorizations.  We  can  recursively  compute  the  lists  of  set
partitions by noting that the partitions of a set with n elements can be created by
appending  the  singleton  8n<  to  each  list  of  partitions  of  n - 1  elements,  or  by
appending  the element  n  to  each partition of  n - 1 elements.  An implementation
of this recursion using ReplaceList is given by Dickau [12] as follows.

In[121]:= BellRule1�n_� :� �S__� 
 �S, �n��;
BellRule2�n_� :� �b___, �S__�, a___� 
 �b, �S, n�, a�;

In[123]:= BellLists�1� � ���1���;
In[124]:= BellLists�n_Integer?Positive� :� BellLists�n� �

Flatten�
Map�ReplaceList�#, �BellRule1�n�, BellRule2�n��� &,
BellLists�n � 1��, 1�

Here is an example using Dickau’s function.

In[125]:= BellLists�3�
Out[125]= ���1�, �2�, �3��, ��1, 3�, �2��,

��1�, �2, 3��, ��1, 2�, �3��, ��1, 2, 3���

Now  if,  for  example,  n = 180 = 4 * 9 * 5,  we  must  substitute  1 Ø 4,  2 Ø 9,  3 Ø 5
to  obtain  the  factors  in  the  relatively  prime  factorizations.  Finally,  we  multiply
the factors together to produce the desired result.

In[126]:= BellLists�3� �. MapThread�Rule, �Range�3�, �4, 9, 5���
Out[126]= ���4�, �9�, �5��, ��4, 5�, �9��,

��4�, �9, 5��, ��4, 9�, �5��, ��4, 9, 5���

In[127]:= Apply�Times, #, 1� & �� %

Out[127]= ��4, 9, 5�, �20, 9�, �4, 45�, �36, 5�, �180��

Putting  this  together  we  have  a  nice  oneliner.  This  approach  is  unsurprisingly
much faster than the previous ones!

In[128]:= UnorderedRelativelyPrime3�n_� :� With��f � FactorInteger�n��,
Apply�Times, #, 1� & �� �BellLists�Length�f�� �.

MapThread�Rule, �Range�Length�f��, Power ��� f����
In[129]:= Length�UnorderedRelativelyPrime3�240 49 11 13�� �� Timing

Out[129]= �0. Second, 203�

Ordered Relatively Prime Factorizations
Whichever  of  the  three  approaches  is  used to  generate  the  unordered  cases,  we
need only permute the elements of each such unordered factorization to produce
the lists of the ordered ones.

In[130]:= OrderedRelativelyPrime�n_� :�
Flatten�Permutations �� UnorderedRelativelyPrime1�n�, 1�
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‡ Conclusion
We have studied methods to enumerate and to construct ordered and unordered
factorizations  of  integers,  subject  to  various  constraints  on  the  parts.  Recursive
descriptions  of  these  objects,  together  with  Mathematica’s  functional  program-
ming techniques, were used to implement these algorithms efficiently. 
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