
The Mathematica® Journal

Ordered and Unordered
Factorizations of Integers
Arnold Knopfmacher
Michael Mays
We study the number of ways of writing a positive integer n as a product
of integer factors greater than one. We survey methods from the literature
for enumerating and also generating lists of such factorizations for a given
number n. In addition, we consider the same questions with respect to
factorizations that satisfy constraints, such as having all factors distinct.
We implement all these methods in Mathematica and compare the speeds
of various approaches to generating these factorizations in practice.

‡ Introduction
To study the number of ways of writing a positive integer n as a product of
integer factors greater than one, there are two basic cases to consider. First, we
can regard rearrangements of factors as different. In the case of n = 12, this gives
the following eight ordered factorizations.

��2, 2, 3�, �2, 3, 2�, �2, 6�, �3, 2, 2�, �3, 4�, �4, 3�, �6, 2�, �12��

Alternatively we can ignore the order of the factors, which then gives the follow-
ing four unordered factorizations.

��3, 2, 2�, �4, 3�, �6, 2�, �12��

These two functions, which we denote by HHnL and PHnL, respectively, can be
considered multiplicative analogs of compositions and partitions of integers. A
composition is an ordered set of positive integers that sum to n. For example, we
have eight compositions of n = 4, namely {{4}, {3,1}, {1,3}, {2,2}, {2,2,1}, {1,2,1},
{1,1,2}, {1,1,1,1}}. In general the number of compositions of n, CHnL, is equal to
2n-1 . A partition is a set that sums to n in which order is disregarded. There are
five partitions of four. To count them we can use the function PartitionsP, and
to list them we can use Partitions from the Combinatorica package.

In[1]:= �� DiscreteMath‘Combinatorica‘

In[2]:= Partitions�4�

Out[2]= ��4�, �3, 1�, �2, 2�, �2, 1, 1�, �1, 1, 1, 1��

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

In[3]:= PartitionsP�Range�10��

Out[3]= �1, 2, 3, 5, 7, 11, 15, 22, 30, 42�

In fact the number of compositions and partitions arise as special cases of our
factorization functions, in the sense that if p is a prime number, then
H Hpr L = CHrL = 2r-1 and P Hpr L = PartitionsP@rD. For general numbers n with
prime factorizations n = p1

r1 p2
r2 … pk

rk , the enumeration of HHnL and PHnL is more
complicated, as we shall discuss later.

We will also discuss factorizations into distinct parts. In the ordered case,
Hd H12L = 5 since we have the factorizations {{2,6}, {3,4}, {4,3}, {6,2}, {12}}. In the
unordered case, Pd H12L = 3 since there are three cases, {{4,3}, {6,2}, {12}}. If p is a
prime number, then as special cases we have Hd Hpr L = Cd H rL and
P Hpr L = PartitionsQ@rD, where Cd HrL denotes the number of compositions of r
into distinct parts (see Richmond and Knopfmacher [1]), and PartitionsQ is the
Mathematica function for counting partitions into distinct parts.

In[4]:= PartitionsQ�Range�10��

Out[4]= �1, 1, 2, 2, 3, 4, 5, 6, 8, 10�

The enumeration and generation of integer partitions and compositions are
problems discussed in standard books on combinatorics. A definitive reference is
Andrews [2]. However, the corresponding problems for ordered and unordered
factorizations have not until now received a comprehensive treatment.

‡ Ordered Factorizations
For historical reasons, we will discuss formulas to enumerate factorizations
before we discuss methods to generate the corresponding factorizations. In
addition, some of the recursive methods to generate factorizations are extensions
of the corresponding recursions to enumerate factorizations.

· Recursions for Enumerating Ordered Factorizations
We begin with two recurrence formulas given by Hille [3]. The first element of
an ordered factorization of n > 1 can be any number d such that d divides n. By
appending to d all possible ordered factorizations of n ê d, we obtain the recursion
HH1L = 1; H HnL = ⁄d»n HHdL for n ¥ 2. We implement this as follows.

In[5]:= H1�1� :� 1;
H1�n_� :� H1�n� � Total�H1 �� Drop�Divisors�n�, �1��

In[7]:= Table�H1�n�, �n, 1, 12��

Out[7]= �1, 1, 1, 2, 1, 3, 1, 4, 2, 3, 1, 8�

Ordered and Unordered Factorizations of Integers 73

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

Using the Möbius inversion formula, Hille also derived a second recursion,

H HnL = 2

i

k

jjjjjjjjjj‚pi

H
i
kjjj

n
ÅÅÅÅÅÅÅÅ
pi

y
{zzz - „

pi, p j

H
i
k
jjj n

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
pi p j

y
{
zzz + ∫ + H-1Lk-1 H

i
kjjj

n
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
p1 p2 … pk

y
{zzz
y

{

zzzzzzzzzz,

where n = p1
r1 p1

r1 p2
r2 … pk

rk , which holds for n ¥ 2.

This finds the list of distinct prime factors of n.

In[8]:= PrimeFactorList�n_� :� First �� FactorInteger�n�

This recursion requires the initial value 1ÅÅÅÅÅ2 .

In[9]:= H2�1� � 1�2;

The recursion can be rendered elegantly as a oneliner.

In[10]:= H2�n_� :� H2�n� � �2 Total���1�^�Length�#�� H2�n� Times �� #� & ��
Rest�Subsets�PrimeFactorList�n����

In[11]:= Table�H2�n�, �n, 2, 12��
Out[11]= �1, 1, 2, 1, 3, 1, 4, 2, 3, 1, 8�

· MacMahon’s Formula for H
MacMahon [4] derived an explicit formula for the value of HHnL as a double sum
over a product. Given n = p1

r1 p1
r1 p2

r2 … pk
rk ,

H HnL = „
j=1

q

 „
i=0

j-1

 H-1Li
i
k
jjj j

i
y
{
zzz Â

h=1

k

i
k
jjj rh + j - i - 1

rh

y
{
zzz,

where q = ⁄i=1
k ri , is the sum of the prime exponents of n. We program this by

In[12]:= H3�n_� :�

�
j�1

Total�##�

�
i�0

j

��1�i Binomial�j, i� Apply�Times,

Binomial�# � j � i � 1, #� & �� #� &�Last �� FactorInteger�n��
In[13]:= H3�2^5 3^4 5� �� Timing

Out[13]= �0. Second, 102576�

· A Recursion for Factorizations with Distinct Parts
Warlimont [5] derived a Dirichlet series generating function for the function
Hd Hk, nL, which denotes the number of ordered factorizations of n into k distinct
parts. Although Warlimont was only interested in this for asymptotic purposes,
his generating function can be used to derive the following recurrence:

Hd Hk + 1, nL = k ! „
j=0

k H-1L j

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHk - 1 - jL!
 ‚Hd Jk - j,

n
ÅÅÅÅÅÅ
d
N,

74 Arnold Knopfmacher and Michael Mays

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

where the inside sum is taken over all d such that d » n and for d ¥ 2, d is a
H j + 1L-st power.

There does not seem to be a simple combinatorial interpretation for this for-
mula. We implement this starting with the appropriate boundary conditions.

In[14]:= Hd�1, n_� :� 1;
Hd�k_, 1� :� 0;
Hd�0, n_� :� 0

In[17]:= Hd�0, 1� :� 1;
Hd�1, 1� :� 0;

When n is a prime number we have the following.

In[19]:= Hd�k_, n_?PrimeQ� :� KroneckerDelta�k, 1�

Also observe that the number of parts k must satisfy 2k § n.

In[20]:= Hd�k_, n_ �; 2k � n� :� 0

Now we implement the general formula.

In[21]:= Hd�k_, n_� :�

Hd�k, n� � �k � 1�� �
j�0

k�1

	��1�j
 �k � 1 � j�� Total�Hd�k � 1 � j, n�#� & ��

Select�Rest�Divisors�n��, IntegerQ�#1��j�1� � &���
In[22]:= Hd�#, 24� & �� Range�0, 4�

Out[22]= �0, 1, 6, 6, 0�

We verify these counts by using the function DistinctOrderedFactorizaÖ
tions, which is defined in the next subsection.

In[23]:= DistinctOrderedFactorizations�24�

Out[23]= ��2, 3, 4�, �2, 4, 3�, �2, 12�, �3, 2, 4�, �3, 4, 2�, �3, 8�,
�4, 2, 3�, �4, 3, 2�, �4, 6�, �6, 4�, �8, 3�, �12, 2�, �24��

To obtain the total number of distinct ordered factorizations, we must sum
Hd @k, nD over all permissible values of the number of parts k.

In[24]:= Hd�n_� :� Total�Hd�#, n� & �� Range�Floor�Log�2, n����

In[25]:= Hd�36�

Out[25]= 13

In practice this recursion is slow. A faster counting method is discussed in a later
section.

· Generating Ordered Factorizations
The first recursion for HHnL suggests a natural recursive approach to generate all
the ordered factorizations of n.

Ordered and Unordered Factorizations of Integers 75

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

We append to the first factor d in a factorization of n > 1, all possible ordered
factorizations of nÅÅÅÅÅd , where d can be any divisor of n.

In[26]:= OrderedFactorizations�1� � ����;

In[27]:= OrderedFactorizations�n_?PrimeQ� :� ��n��

In[28]:= OrderedFactorizations�n_� :�
OrderedFactorizations�n� � Flatten�Function�d, Prepend�#, d� & ��

OrderedFactorizations�n�d�� �� Rest�Divisors�n��, 1�
In[29]:= OrderedFactorizations�24�

Out[29]= ��2, 2, 2, 3�, �2, 2, 3, 2�, �2, 2, 6�, �2, 3, 2, 2�, �2, 3, 4�, �2, 4, 3�,
�2, 6, 2�, �2, 12�, �3, 2, 2, 2�, �3, 2, 4�, �3, 4, 2�, �3, 8�,
�4, 2, 3�, �4, 3, 2�, �4, 6�, �6, 2, 2�, �6, 4�, �8, 3�, �12, 2�, �24��

One way to list all the ordered factorizations with distinct parts is to simply select
these from the list of all ordered factorizations.

In[30]:= DistinctOrderedFactorizations�n_� :�
Select�OrderedFactorizations�n�, Unequal �� # &D

In[31]:= DistinctOrderedFactorizations�24�

Out[31]= ��2, 3, 4�, �2, 4, 3�, �2, 12�, �3, 2, 4�, �3, 4, 2�, �3, 8�,
�4, 2, 3�, �4, 3, 2�, �4, 6�, �6, 4�, �8, 3�, �12, 2�, �24��

However, there are faster methods for doing this, which we discuss in a later
section.

‡ Unordered Factorizations
There do not appear to be any explicit formulas for PHnL in the literature. Also,
the recurrence relations that are known tend to lack simple combinatorial
interpretations.

· A Product Recursion
Harris and Subbarao [6] give the following product recursion for PHnL. For any
positive integer a, let di = a1êi if a is an ith power and di = 1 otherwise. Let
d
êê

= ¤i=1
¶ di . This gives ¤d »n d

êê pHnêdL
= n pHnL . To make use of this, we take logs of

the recurrence. First, we define the d
êê

 values in terms of a given positive integer a.
One approach is to use Product.

In[32]:= d1�����a_� :� �
i�1

Ceiling�Log�2,a��
If�IntegerQ�c � a1�i�, c, 1�

Alternatively, here is a more elegant construction.

In[33]:= d2
�����a_� :� Apply�Times , Select�a1�Range�Ceiling�Log�2,a���, IntegerQ��

Then we can define P2.

76 Arnold Knopfmacher and Michael Mays

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

In[34]:= P2�1� � 1;

In[35]:= P2�n_� :� P2�n� � Round
1� �Log�n��
Simplify
Total
 Log
d2�����#�� P2�n� #� & �� Rest�Divisors�n�����

The use of Simplify in P2 is not required, but speeds up the overall computa-
tion. Round produces the correct integer value for P2 much faster than by using
additional simplification methods to remove the logarithms.

In[36]:= P2�33 23� �� Timing

Out[36]= �0.078 Second, 31�

· A Recursion for Unordered Factorizations with Largest Part m
Let gHm, nL denote the number of unordered factorizations of n with largest part
at most m. Hughes and Shallit [7] gave the recursion

g Hm, nL = ‚
d »n
d§m

g Jd,
n
ÅÅÅÅÅÅ
d
N.

This particular recursion is easy to explain: Let n = a1 a2 … an be an unordered
factorization of n with parts at most m and parts arranged in decreasing order, so
that the largest part is a1 . The number of ways to choose a2 , … , ak is then
gHa1 , n ê a1 L. For a1 we can choose any divisor d of n such that d § m. Summing
over all such d gives the result. We implement this as follows.

In[37]:= g�m_, 1� :� 1;
g�1, n_� :� 0;
g�1, 1� � 1;
g�m_, n_� :�
g�m, n� � Total�g�#, n� #� & �� Select�Divisors�n�, # 	 m &��

All unordered factorizations are counted by gHn, nL.
In[41]:= P1�n_� :� g�n, n�
In[42]:= P1 �� Range�12�

Out[42]= �1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4�

This gives a much faster recursion than P2.

In[43]:= P1�36 24� �� Timing

Out[43]= �0.016 Second, 323�

In[44]:= P2�36 24� �� Timing

Out[44]= �0.422 Second, 323�

Canfield, Erdös, and Pomerance [8] remarked in their paper that it is not particu-
larly easy to compute PHnL. They mention that even showing PH1800L = 137 takes
some work. Their approach was based on a tree traversal algorithm. With our
recursion this computation presents no problem.

In[45]:= P1�1800� �� Timing

Out[45]= �0.015 Second, 137�

Ordered and Unordered Factorizations of Integers 77

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

· Generating Unordered Factorizations
One inefficient approach is simply to sort the larger list of ordered factorizations
and remove duplicates. However, a better approach is to use the Hughes–Shallit
idea to recursively build up a list of ordered factorizations with largest part at
most m.

In[46]:= UnorderedFactorizations�m_, 1� � ����;
UnorderedFactorizations�1, n_� � ����;

In[48]:= UnorderedFactorizations�m_, n_ �; PrimeQ�n�� :� If�m � n, ��, ��n���

In[49]:= UnorderedFactorizations�m_, n_� :�
UnorderedFactorizations�m, n� � Flatten�

Function�d, Prepend�#, d� & �� UnorderedFactorizations�d, n�d�� ��
Rest�Select�Divisors�n�, # 	 m &��, 1�

In[50]:= UnorderedFactorizations�n_� :� UnorderedFactorizations�n, n�

Now we test this out.

In[51]:= UnorderedFactorizations�24�

Out[51]= ��3, 2, 2, 2�, �4, 3, 2�, �6, 2, 2�, �6, 4�, �8, 3�, �12, 2�, �24��

In[52]:= Length�UnorderedFactorizations�34 24��
 P1�34 24�

Out[52]= True

· Unordered Factorizations with Distinct Parts
A modification of Hughes–Shallit reasoning gives a recursion for unordered
factorizations with distinct parts and largest part at most m. We merely observe
that the part added to d should have largest part less than or equal to d - 1:

gdHm, nL = ‚
d »n
d§m

gdJd - 1,
n
ÅÅÅÅÅÅ
d
N.

We program this with necessary boundary conditions to start the recursion.

In[53]:= gd�m_, 1� :� 1;
gd�1, n_� :� 0;
gd�1, 1� � 1;
gd�0, n_� :� 0;
gd�m_, n_� :�
gd�m, n� � Total�gd�# � 1, n�#� & �� Select�Divisors�n�, # 	 m &��

In[58]:= Pd�n_� :� gd�n, n�

Here is an example.

In[59]:= Pd�34 22 5 7� �� Timing

Out[59]= �0.016 Second, 253�

78 Arnold Knopfmacher and Michael Mays

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

Generating Unordered Factorizations with Distinct Parts
Again we can simply select the permissible factorizations from the larger list of
all unordered factorizations, but a better approach is to recursively generate
them using the idea for the recursion for gdHm, nL.

In[60]:= DistinctUnorderedFactorizations�m_, 1� � ����;
DistinctUnorderedFactorizations�1, n_� � ��;
DistinctUnorderedFactorizations�0, n_� � ��;

In[63]:= DistinctUnorderedFactorizations�m_, n_ �; PrimeQ�n�� :�
If�m � n, ��, ��n���

In[64]:= DistinctUnorderedFactorizations�m_, n_� :�
DistinctUnorderedFactorizations�m, n� � Flatten�Function�d,

Prepend�#, d� & �� DistinctUnorderedFactorizations�d � 1, n� d�� ��
Rest�Select�Divisors�n�, # 	 m &��, 1�

In[65]:= DistinctUnorderedFactorizations�n_� :�
DistinctUnorderedFactorizations�n, n�

Here are the distinct unordered factorizations of 24.

In[66]:= DistinctUnorderedFactorizations�24�

Out[66]= ��4, 3, 2�, �6, 4�, �8, 3�, �12, 2�, �24��

Here are the nondistinct factorizations.

In[67]:= Complement�UnorderedFactorizations�24�, %�

Out[67]= ��6, 2, 2�, �3, 2, 2, 2��

We check that we are generating the right number of cases.

In[68]:= Pd�34 24�
 Length�DistinctUnorderedFactorizations�34 24��
Out[68]= True

· Faster Generation of Ordered Factorization Lists
The lists of unordered factorizations constructed earlier lead to a much faster
way of generating the corresponding lists of ordered factorizations. We merely
observe that all ordered cases arise as permutations of unordered cases. This
gives a different ordering of the factorizations to the earlier method. However,
the lists are easily checked to be the same.

In[69]:= OrderedFactorizations2�n_� :�
Flatten�Permutations �� UnorderedFactorizations�n�, 1�

In[70]:= OrderedFactorizations2�24�

Out[70]= ��3, 2, 2, 2�, �2, 3, 2, 2�, �2, 2, 3, 2�,
�2, 2, 2, 3�, �4, 3, 2�, �4, 2, 3�, �3, 4, 2�, �3, 2, 4�,
�2, 4, 3�, �2, 3, 4�, �6, 2, 2�, �2, 6, 2�, �2, 2, 6�,
�6, 4�, �4, 6�, �8, 3�, �3, 8�, �12, 2�, �2, 12�, �24��

Ordered and Unordered Factorizations of Integers 79

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

In[71]:= Sort�%�
 Sort�OrderedFactorizations�24��

Out[71]= True

The new approach gives a faster method for generating the factorizations list.

In[72]:= Length�OrderedFactorizations2�30^3�� �� Timing

Out[72]= �0.078 Second, 64324�

In[73]:= Length�OrderedFactorizations�30^3�� �� Timing

Out[73]= �0.172 Second, 64324�

Factorizations with Distinct Parts
Again all ordered cases arise as permutations of unordered distinct cases. This
also leads to a large speedup in computation time.

In[74]:= DistinctOrderedFactorizationsNew�n_� :�
Flatten�Permutations �� DistinctUnorderedFactorizations�n�, 1�

In[75]:= Sort�DistinctOrderedFactorizationsNew�60�� ��
Sort�DistinctOrderedFactorizations�60��

Out[75]= True

· Faster Count for Ordered Factorizations with Distinct Parts
Let Pd Hk, nL denote the number of unordered factorizations into k distinct parts.
We observe that Hd HnL = ⁄k k! Pd Hk, nL. We do not have a formula for Pd Hk, nL,
but we can compute its values by sorting the lists of distinct unordered factoriza-
tions according to length. Although we generate (generally short) lists of factoriza-
tions as part of the counting process, this turns out to be the fastest method we
have found to compute the usually large values of Hd .

First, we sort our lists of factorizations according to length. For example, here
n = 36.

In[76]:= lis �
Sort�DistinctUnorderedFactorizations�36�, Length�#1� � Length�#2� &�

Out[76]= ��36�, �18, 2�, �12, 3�, �9, 4�, �6, 3, 2��

Then, we split up the different classes with respect to length, count how many of
length k occur, multiply by k !, and sum.

In[77]:= Split�lis, Length�#1� �� Length�#2� &�

Out[77]= ���36��, ��18, 2�, �12, 3�, �9, 4��, ��6, 3, 2���

In[78]:= a � Length �� %;
Plus �� �a Range�Length�a����

Out[79]= 13

This agrees with our previous computation. We put this method together as a
oneliner.

80 Arnold Knopfmacher and Michael Mays

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

In[80]:= H
`
d�n_� :� Plus �� �# Range�Length�#���� &�
Length �� Split�Sort�DistinctUnorderedFactorizations�n�,

Length�#1� � Length�#2� &�, Length�#1� �� Length�#2� &��

In[81]:= H
`
d�30^3� �� Timing

Out[81]= �0.047 Second, 11655�

In general, H
`

d seems to provide a considerable speedup over Hd .

In[82]:= Hd�30^3� �� Timing

Out[82]= �4.375 Second, 11655�

‡ Highly Factorable Numbers
Now that we have implemented various methods to count ordered and unor-
dered factorizations, we will put them to use to produce lists of numbers that
have a greater number of factorizations than any smaller positive integer.

We say that a natural number n is highly factorable with respect to the function
f , if f HmL < f HnL for all m, 1 § m < n. In [8], Canfield, Erdös, and Pomerance
computed a list of highly factorable numbers with respect to the function P.
Since the functions P and H depend on the prime exponents but not the primes
themselves, it is clear that a highly factorable number must be of the form
n = p1

r1 p2
r2 ∫ pk

rk with r1 ¥ r2 ¥ ∫ rk ¥ 1 and where pi denotes the ith prime
number. We use Partitions to generate a list of acceptable exponents and then
define a function ExponentsToNumber to produce a natural number n using the
exponents from the partition and the corresponding first few primes.

In[83]:= ExponentsToNumber�exponentList_� :� Times ���
�Prime�Range�#�� & �� �Length �� exponentList�^exponentList�

In[84]:= Partitions�4�

Out[84]= ��4�, �3, 1�, �2, 2�, �2, 1, 1�, �1, 1, 1, 1��

In[85]:= ExponentsToNumber�%�

Out[85]= �16, 24, 36, 60, 210�

To produce all numbers of this form less than a given value bound, we must
consider all partitions of numbers 1 to Log[2,bound], as the smallest number
arising from a partition of n is 2n .

In[86]:= lst�bound_� :� Flatten�Table�Partitions�k�, �k, Log�2, bound���, 1�;

For example, let us find all the highly factorable numbers less than 1000.

In[87]:= a � Sort�ExponentsToNumber�lst�1000���;

Now eliminate numbers greater than bound in our list, compute the value of the
P function for each number in the list, and eliminate the values that are not
highly factorable using a replacement rule.

Ordered and Unordered Factorizations of Integers 81

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

In[88]:= b � Select�a, # � 1000 &�;

In[89]:= valsP � �#, P1�#�� & �� b;

In[90]:= LargePlist � valsP ��.
�x___, �y1_, y2_�, �z1_, z2_�, w___� � �x, �y1, y2�, w� �; y2 � z2;

Now we use GridBox to display our table of highly factorable P numbers.

In[91]:= StyleBox�FormBox�GridBox�Prepend�LargePlist, �"n", "P�n�"��,
GridFrame
 3, ColumnLines
 1, RowLines
 �2, 1�, ColumnSpacings

0.5, ColumnAlignments
 "."�, "TraditionalForm"�,

Background
 GrayLevel�0.85�, FontSize
 8� �� DisplayForm

Out[91]//DisplayForm=

n PHnL
2 1

4 2

8 3

12 4

16 5

24 7

36 9

48 12

72 16

96 19

120 21

144 29

192 30

216 31

240 38

288 47

360 52

432 57

480 64

576 77

720 98

960 105

Replacing P1 by H3 leads to the following list of highly factorable numbers with
respect to H .

In[92]:= Off�General::spell1�

82 Arnold Knopfmacher and Michael Mays

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

In[93]:= LargeHlist � �#, H3�#�� & �� b ��.
�x___, �y1_, y2_�, �z1_, z2_�, w___� � �x, �y1, y2�, w� �; y2 � z2;

StyleBox�FormBox�GridBox�Prepend�LargeHlist, �"n", "H�n�"��,
GridFrame
 3, ColumnLines
 1, RowLines
 �2, 1�, ColumnSpacings

0.5, ColumnAlignments
 "."�, "TraditionalForm"�,

Background
 GrayLevel�0.85�, FontSize
 8� �� DisplayForm

Out[94]//DisplayForm=

n HHnL
2 1

4 2

6 3

8 4

12 8

24 20

36 26

48 48

72 76

96 112

120 132

144 208

192 256

240 368

288 544

360 604

432 768

480 976

576 1376

720 1888

864 2208

960 2496

Erdös, Canfield, and Pomerance were able to compute a table of all highly
factorable numbers less than 109 with respect to P in their paper [8]. The
approach just used gives a much faster method to find the 118 highly factorable
numbers less than 109 with respect to P, as well as the 124 highly factorable
numbers less than 109 with respect to H .

· Numbers Highly Factorable with Respect to Both P and H
There appear to be many numbers common to both of the displayed lists. To
find these common numbers, join the two lists and extract the first elements (the
common values of n). Find the pairs by using Split. Then extract the common
numbers as the first element of the sublists of length 2.

In[95]:= commonPositions � First �� �Join�LargePlist, LargeHlist� �� Sort�

Out[95]= �2, 2, 4, 4, 6, 8, 8, 12, 12, 16, 24, 24, 36, 36, 48, 48, 72, 72,
96, 96, 120, 120, 144, 144, 192, 192, 216, 240, 240, 288, 288,
360, 360, 432, 432, 480, 480, 576, 576, 720, 720, 864, 960, 960�

Ordered and Unordered Factorizations of Integers 83

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

In[96]:= First �� Select�Split�commonPositions, #1 �� #2 &�, Length�#�
 2 &�

Out[96]= �2, 4, 8, 12, 24, 36, 48, 72, 96, 120,
144, 192, 240, 288, 360, 432, 480, 576, 720, 960�

So up to 1000, most highly factorable numbers appear in both lists. However,
common numbers seem to become less frequent as we increase our bound. For
example, we find that there are 55 common highly factorable numbers less than
109 , the largest of these being 43545600.

‡ Factorizations with Relatively Prime Parts
In this final section we investigate an interesting class of restricted factorizations,
namely the class of factorizations in which the factors must be relatively prime to
each other. Clearly this is a stronger restriction than requiring distinct factors.
The asymptotic growth of such factorizations has been studied by Warlimont [5].
We note that in the special case of squarefree integers, all factorizations are
necessarily relatively prime and distinct. Thus, for squarefree integers the values
of the three functions that count unrestricted or distinct or relatively prime
factorizations, all coincide for the ordered and unordered cases respectively.

We will discuss and compare several different approaches to generate the corre-
sponding lists of factorizations.

· Ordered Factorizations with Relatively Prime Parts
In the ordered case, factorizations of n = p1

r1 p2
r2 … pk

rk into relatively prime parts
have a natural correspondence to ordered partitions of a set with the k elements
p1

r1 , p2
r2 , … , pk

rk . The exponential generating function for the number of ordered
set partitions is 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2-Ex . (These and further results on set partitions that follow can
be found in Wilf’s book [9].) From this exponential generating function we can
easily compute the first few values.

In[97]:= CoefficientList�Series�
1

��������������
2 � Ex

, �x, 0, 10��, x� Range�0, 10��

Out[97]= �1, 1, 3, 13, 75, 541, 4683, 47293, 545835, 7087261, 102247563�

Here is another expression for the number of ordered set partitions (sometimes
called ordered Bell numbers) due to Carlitz [10].

In[98]:= OrderedBell�0� :� 1;

In[99]:= OrderedBell�r_� :� �
k�0

r

�
j�0

k

��1�k�j Binomial�k, j� jr

In[100]:= Table�OrderedBell�r�, �r, 0, 10��

Out[100]= �1, 1, 3, 13, 75, 541, 4683, 47293, 545835, 7087261, 102247563�

In addition there is also this pretty expression as an infinite sum.

84 Arnold Knopfmacher and Michael Mays

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

In[101]:= OrderedBell2�n_� :�
1
����
2

 �
m�0

�

mn 2�m

Using either of these it is easy to count the number of ordered relatively prime
factorizations.

In[102]:= Hr�n_� :� OrderedBell�Length�FactorInteger�n���

In[103]:= Hr�304�
Out[103]= 13

· Unordered Factorizations with Relatively Prime Parts
In the unordered case, factorizations of n = p1

r1 p2
r2 … pk

rk into relatively prime
parts now have a natural correspondence to unordered partitions of a set with the
k elements p1

r1 , p2
r2 , … , pk

rk . The exponential generating function for the number
of ordered set partitions is EEx -1 . We use this to easily compute the first few
values.

In[104]:= CoefficientList�Series�EEx �1 , �x, 0, 10��, x� Range�0, 10��

Out[104]= �1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975�

Again there is a pretty expression for the number of partitions of a set (or Bell
numbers) as an infinite sum. Now it is easy to count the number of unordered
relatively prime factorizations.

In[105]:= Off�General::spell�

In[106]:= Bell�n_� :�
1
����
E

 �
m�0

�

mn �m�

In[107]:= Pr�n_� :� Bell�Length�FactorInteger�n���

In[108]:= Pr�304�
Out[108]= 5

· Generating Lists of Relatively Prime Factorizations
There are several different approaches that can be used to find the desired lists.

Unordered Relatively Prime Factorizations by Selection
To generate a list of relatively prime factorizations, we need only search among
the distinct unordered factorizations and pick out those with relatively prime
parts.

Method 1. By Factorization
Our first approach to selecting the relatively prime cases is to factor the numbers
in each distinct unordered factorization, and after flattening and sorting, see if
this matches the factorization of n.

Ordered and Unordered Factorizations of Integers 85

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

In[109]:= Sort�Flatten�FactorInteger��15, 4��, 1�� �� FactorInteger�60�

Out[109]= True

In[110]:= Sort�Flatten�FactorInteger��6, 10��, 1�� �� FactorInteger�60�

Out[110]= False

This shows that 815, 4< is admissible as a relatively prime factorization of 60 but
86, 10< is not. We illustrate the method in the case n = 60.

In[111]:= DistinctUnorderedFactorizations�60�

Out[111]= ��5, 4, 3�, �6, 5, 2�, �10, 3, 2�,
�10, 6�, �12, 5�, �15, 4�, �20, 3�, �30, 2�, �60��

In[112]:= a � Flatten�#, 1� & �� FactorInteger �� %;

We determine the positions of the cases with admissible factorizations. Then we
read off these factorizations from the list.

In[113]:= Position�Sort �� a, FactorInteger�60��

Out[113]= ��1�, �5�, �6�, �7�, �9��

In[114]:= DistinctUnorderedFactorizations�60���Flatten�%���

Out[114]= ��5, 4, 3�, �12, 5�, �15, 4�, �20, 3�, �60��

We put this together into one function.

In[115]:= UnorderedRelativelyPrime1�n_� :� DistinctUnorderedFactorizations�
n���Flatten�Position�Sort �� �Flatten�#, 1� & �� �FactorInteger ��

DistinctUnorderedFactorizations�n���, FactorInteger�n�����
In[116]:= UnorderedRelativelyPrime1�240�

Out[116]= ��16, 5, 3�, �16, 15�, �48, 5�, �80, 3�, �240��

Method 2. By Greatest Common Divisors
A second approach is to check that the factors are relatively prime directly, by
finding the greatest common divisors of every pair of factors. However, Bressoud
and Wagon [11] give a much more efficient way to test a long list for relative
primality of all pairs.

In[117]:= RelativelyPrimeList�lst_� :� LCM �� lst �� Times �� lst

We rewrite our function accordingly.

In[118]:= UnorderedRelativelyPrime2�n_� :� DistinctUnorderedFactorizations�
n���Flatten�Position�RelativelyPrimeList��

DistinctUnorderedFactorizations�n�, True����
In[119]:= Length�UnorderedRelativelyPrime2�240 49 11 13�� �� Timing

Out[119]= �0.438 Second, 203�

In[120]:= Length�UnorderedRelativelyPrime1�240 49 11 13�� �� Timing

Out[120]= �0.219 Second, 203�

86 Arnold Knopfmacher and Michael Mays

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

Method 3: By Generating Set Partitions
The idea here is to generate the partitions of a set with k elements and then
replace these elements with the appropriate prime powers to obtain a list of
relatively prime factorizations. We can recursively compute the lists of set
partitions by noting that the partitions of a set with n elements can be created by
appending the singleton 8n< to each list of partitions of n - 1 elements, or by
appending the element n to each partition of n - 1 elements. An implementation
of this recursion using ReplaceList is given by Dickau [12] as follows.

In[121]:= BellRule1�n_� :� �S__�
 �S, �n��;
BellRule2�n_� :� �b___, �S__�, a___�
 �b, �S, n�, a�;

In[123]:= BellLists�1� � ���1���;
In[124]:= BellLists�n_Integer?Positive� :� BellLists�n� �

Flatten�
Map�ReplaceList�#, �BellRule1�n�, BellRule2�n��� &,
BellLists�n � 1��, 1�

Here is an example using Dickau’s function.

In[125]:= BellLists�3�
Out[125]= ���1�, �2�, �3��, ��1, 3�, �2��,

��1�, �2, 3��, ��1, 2�, �3��, ��1, 2, 3���

Now if, for example, n = 180 = 4 * 9 * 5, we must substitute 1 Ø 4, 2 Ø 9, 3 Ø 5
to obtain the factors in the relatively prime factorizations. Finally, we multiply
the factors together to produce the desired result.

In[126]:= BellLists�3� �. MapThread�Rule, �Range�3�, �4, 9, 5���
Out[126]= ���4�, �9�, �5��, ��4, 5�, �9��,

��4�, �9, 5��, ��4, 9�, �5��, ��4, 9, 5���

In[127]:= Apply�Times, #, 1� & �� %

Out[127]= ��4, 9, 5�, �20, 9�, �4, 45�, �36, 5�, �180��

Putting this together we have a nice oneliner. This approach is unsurprisingly
much faster than the previous ones!

In[128]:= UnorderedRelativelyPrime3�n_� :� With��f � FactorInteger�n��,
Apply�Times, #, 1� & �� �BellLists�Length�f�� �.

MapThread�Rule, �Range�Length�f��, Power ��� f����
In[129]:= Length�UnorderedRelativelyPrime3�240 49 11 13�� �� Timing

Out[129]= �0. Second, 203�

Ordered Relatively Prime Factorizations
Whichever of the three approaches is used to generate the unordered cases, we
need only permute the elements of each such unordered factorization to produce
the lists of the ordered ones.

In[130]:= OrderedRelativelyPrime�n_� :�
Flatten�Permutations �� UnorderedRelativelyPrime1�n�, 1�

Ordered and Unordered Factorizations of Integers 87

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

‡ Conclusion
We have studied methods to enumerate and to construct ordered and unordered
factorizations of integers, subject to various constraints on the parts. Recursive
descriptions of these objects, together with Mathematica’s functional program-
ming techniques, were used to implement these algorithms efficiently.

‡ Acknowledgments
The authors thank the referee for his careful reading of the manuscript and for
enhancements to both the efficiency and elegance of the coding. In addition, the
authors thank Glenn Scholebo, the compositor of The Mathematica Journal, for
improving the typesetting of the paper.

‡ References
[1] B. Richmond and A. Knopfmacher, “Compositions with Distinct Parts,” Aequationes

Mathematicae, 49, 1995 pp. 86–97.

[2] G. E. Andrews, The Theory of Partitions, Encyclopedia of Mathematics and Its Applica-
tions 2, New York: Addison-Wesley, 1976.

[3] E. Hille, “A Problem in ‘Factorisatio Numerorum,’” Acta Arithmetica, 2, 1936
pp. 134–144.

[4] P. A. MacMahon, “Memoir on the Theory of the Compositions of Numbers,” Philosophi-
cal Transactions of the Royal Society of London (A), 184, 1893 pp. 835–901.

[5] R. Warlimont, “Factorisatio Numerorum with Constraints,” Journal of Number Theory,
45, 1993 pp. 186–199.

[6] V. C. Harris and M. V. Subbarao, “On Product Partitions of Integers,” Canadian
Mathematical Bulletin, 34(4), 1991 pp. 474–479.

[7] J. F. Hughes and J. O. Shallit, “On the Number of Multiplicative Partitions,” American
Mathematical Monthly, 90(7), 1983 pp. 468–471.

[8] E. R. Canfield, P. Erdös, and C. Pomerance, “On a Problem of Oppenheim Concerning
‘Factorisatio Numerorum,’” Journal of Number Theory, 17, 1983 pp. 1–28.

[9] H. S. Wilf, generatingfunctionology, 2nd ed., New York: Academic Press, 1994.

[10] L. Carlitz, “Extended Bernoulli and Eulerian Numbers,” Duke Mathematical Journal, 31,
1964 pp. 667–689.

[11] D. M. Bressoud and S. Wagon, A Course in Computational Number Theory, New York:
Springer-Verlag, 2000.

[12] R. Dickau, “Visualizing Combinatorial Enumeration,” Mathematica in Education and
Research, 8, 1999 pp. 11–18.

88 Arnold Knopfmacher and Michael Mays

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

About the Authors
Arnold Knopfmacher is a Professor of Mathematics at the University of the Witwa-
tersrand, Johannesburg, where he also obtained his Ph.D. degree. His main research
interests are in enumerative combinatorics and elementary number theory. He is
Director of The John Knopfmacher Centre for Applicable Analysis and Number
Theory, which was established in 1992 by his late father, a distinguished number
theorist. Prior to John’s death in 1999, Arnold and John collaborated extensively
producing over thirty joint papers together.

Michael Mays is a Professor of Mathematics at West Virginia University, where he
does research in combinatorics and number theory and develops software and course
materials for the Institute for Math Learning. He has maintained his collaboration with
Arnold Knopfmacher with five visits over the last decade to The John Knopfmacher
Centre for Applicable Analysis and Number Theory at the University of the Witwa-
tersrand.

Arnold Knopfmacher
The John Knopfmacher Centre for Applicable Analysis and Number Theory
University of the Witwatersrand
Johannesburg 2050, South Africa
arnoldk@cam.wits.ac.za
www.wits.ac.za/science/number_theory/arnold.htm

Michael Mays
Department of Mathematics
West Virginia University
Morgantown, WV 26506-6310
mays@math.wvu.edu
www.math.wvu.edu/~mays

Ordered and Unordered Factorizations of Integers 89

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

